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a b s t r a c t

The numerical solution to the Biot equations of 3-D consolidation is still a challenging task
because of the ill-conditioning of the resulting algebraic system and the instabilities that
may affect the pore pressure solution. Recently new approaches have been advanced based
on mixed formulations. In the present paper a fully coupled 3-D mixed finite element
model is developed with the aim at alleviating the pore pressure numerical oscillations
at the interface between materials with different permeabilities. A solution algorithm is
implemented that takes advantage of the block structure of the discretized problem. The
proposed model is verified against well-known analytical solutions and successfully exper-
imented with in realistic applications of soil consolidation.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Poro-elasticity denotes the coupled process between mechanics and flow in porous media. Its theoretical basis goes
back to the mid 1920s when Terzaghi described analytically the one-dimensional (1-D) consolidation of a soil column un-
der a constant load [1]. In 1941 Biot generalized Terzaghi’s theory to three-dimensional (3-D) porous media [2] by estab-
lishing the mathematical framework which is usually termed as poro-elasticity. Even though sophisticated, and perhaps
more elegant, approaches have been recently advanced, e.g. [3], the Biot equations of consolidation are still used today
in a great variety of fields, ranging from reservoir engineering to biomechanics. For example, poro-elasticity is the basic
theory to predict the compaction of a producing hydrocarbon reservoir and the related hazards, including land subsidence
and borehole damages [4–6]. Several environmental issues connected with groundwater withdrawal, e.g. [7], or the safe
long-term disposal of wastes in the subsurface, e.g. [8], can be addressed with the aid of poro-elastic models. In biome-
chanics the poro-elastic theory is used to describe tumor-induced stresses in the brain [9] and the bone deformation under
a mechanical load [10].

Despite the intensive research in the area, the numerical solution to the Biot partial differential equations is still a chal-
lenging task for a number of reasons. First, the fully coupled approach leads to algebraic systems which can be quite difficult
to solve, with the number of unknowns easily growing up to several hundreds of thousands in real 3-D applications. Second,
the coefficient matrix resulting from the numerical discretization can be severely ill-conditioned especially at the early stage
of the process [11], hence advanced preconditioners and solvers are needed to handle the fully coupled system [12,13]. An-
other approach relies on the iteratively coupled scheme which solves separately in a staggered way the mechanical and the
fluid flow models until convergence. If sufficiently tight convergence criteria are prescribed, the iteratively coupled solution
can be as accurate as the fully coupled one, but the number of required steps might be prohibitively high. Moreover, con-
vergence of the iterative procedure is not always guaranteed depending on the fluid and soil mechanical properties [14].
. All rights reserved.
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A third challenge is related to different forms of instabilities suffered by the numerical solution. For example, if an
advection-dominated thermal process is associated to the Biot equations spurious oscillations may arise in the tempera-
ture and pressure fields because of sharp transient gradients [15]. However, the origin of most instabilities is due to the
assumption that at the initial conditions the soil skeleton behaves as an incompressible medium if the pore fluid is so.
Prescribing the volume change rate to be initially zero leads to the finite element (FE) pathology known as locking, which
typically causes an oscillatory numerical behaviour in the pore pressure. In practice, such an occurrence takes place even if
the fluid compressibility is different from zero but small enough with respect to the bulk compressibility. This form of
instability appears at times smaller than a critical bound depending on the porous medium permeability and stiffness
[16]. Different remedies can be implemented to cope with such numerical difficulty. For example, Reed [17] observed that
using a different approximation order for displacement and pressure may help keep the spurious oscillations under con-
trol. In particular the pore pressure should be computed with the same approximation order as the stress, i.e. one order
below the displacement, leading to FEs characterized by a linear pressure and a quadratic displacement. Unfortunately,
such FEs typically provide a less accurate prediction of the soil deformation [18] with the oscillations in the pore pressure
not entirely eliminated [19]. Post-processing techniques intended to smooth the spurious modes have been proposed with
the aim at restoring the standard FE convergence rate [17,20]. More recently some approaches have been advanced based
on mixed formulations. The main advantage from the mixed approximation spaces relies on the possibility of solving
nearly incompressible problems with no locking and a greater flexibility in describing independently pressures, stresses
and displacements. Tchonkova et al. [21] have developed a least-square mixed model for poro-elasticity yielding a positive
definite discrete problem, while Phillips and Wheeler [22–24] have shown the theoretical convergence of two-dimensional
(2-D) models that couple both continuous and discontinuous Galerkin elements for the displacements with mixed spaces
for the fluid flow. A locally mass conservative approach coupling a mixed method for the flow problem with traditional
FEs for the soil displacements has been proposed by Jha and Juanes [25] who suggest solving the overall model by an
unconditionally stable sequential scheme.

In the present paper a fully coupled 3-D mixed FE formulation is developed to solve numerically the Biot equations of
consolidation with the aim at alleviating the instabilities in the pore pressure solution. The fluid pore pressure and flux are
approximated in the lowest order Raviart–Thomas mixed space, while linear tetrahedral FEs are used for the displace-
ments. The main reasons for the above choices are threefold. First, keeping the flux as a primary variable allows for a
greater accuracy in the velocity field, which can be of interest whenever a consolidation model is coupled with an advec-
tion–diffusion equation, e.g. to account for thermal effects or contaminant transport. Second, a mixed formulation for the
flow problem is element-wise mass conservative because the normal flux is continuous across the element boundaries.
Third, the practical advantages from using low-order interpolation elements, such as ease of implementation, refinement,
and discretization of geometrically complex and heterogeneous domains, are thoroughly preserved. The paper is organized
as follows. After a brief review of the governing partial differential equations, the mixed variational formulation is devel-
oped in a 3-D setting with the discrete system of ordinary differential equations integrated in time. A fully coupled algo-
rithm is then derived, using the symmetric quasi-minimal residual (SQMR) solver [26] accelerated by a block
preconditioner. The mixed FE model is verified against the well-known Terzaghi’s (1-D) and Mandel’s (2-D) analytical
solutions and compared to the results obtained from a standard FE method, with the relative merits discussed. Finally,
the proposed model is tested in two large-size realistic and numerically challenging applications with a few remarks clos-
ing the paper.

2. Mixed FE model of Biot consolidation

The interaction between a granular material and the fluid filling its pores is governed by a stress equilibrium equation
coupled to a mass balance equation, with the relationship linking the grain forces to the fluid pore pressure based on Ter-
zaghi’s effective stress principle. The equilibrium equation for an isotropic poro-elastic medium incorporating the effective
stress concept reads:
lr2ûþ ðkþ lÞrdivû ¼ arpþ b ð1Þ
where k and l are the Lamé constants, a is the Biot coefficient, b the body forces, û the medium displacements and p the fluid
pore pressure. The fluid mass balance is prescribed by the continuity equation:
divv þ @

@t
ð/bpþ adivûÞ ¼ f ð2Þ
where / is the medium porosity, b the fluid compressibility, t time, f a flow source or sink and v Darcy’s velocity. Eq. (2) must
be coupled with Darcy’s law defining v:
�j�1v þrp ¼ 0 ð3Þ
with �j ¼ �k=ðqgÞ; �k the hydraulic conductivity tensor and ðqgÞ the fluid specific weight.
Eqs. (1)–(3) form a coupled partial differential system defined on a 3-D domain X bounded by the frontier C with û; v and

p as unknowns. This system can be solved with appropriate boundary:
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ûðx; tÞ ¼ ûDðx; tÞ over CD

�rtotðx; tÞnðxÞ ¼ tNðx; tÞ over CN

pðx; tÞ ¼ pDðx; tÞ over Cp

vðx; tÞ � nðxÞ ¼ qNðx; tÞ over Cq

8>>><>>>: ð4Þ
and initial conditions:
ûðx; 0Þ ¼ û0ðxÞ
pðx; 0Þ ¼ p0ðxÞ

�
ð5Þ
In Eqs. (4) and (5) CD [ CN ¼ Cp [ Cq ¼ C; �rtot is the total stress tensor, n the outer normal to C and x the position vector in
R3, while the right-hand sides are known functions.

2.1. Variational formulation

The partial differential system (1)–(3) with boundary conditions (4) and initial conditions (5) is solved numerically using
a variational formulation. The unknown functions û; p and v are found in an appropriate space such that the integral form of
(1)–(3) is satisfied for all test functions belonging to the corresponding space. The medium displacement ûðx; tÞ is approx-
imated in the space generated by the continuous piecewise linear polynomials ‘i; i ¼ 1; . . . ;nn, with nn the number of FE
nodes in X:
ûðx; tÞ ¼
ûxðx; tÞ
ûyðx; tÞ
ûzðx; tÞ

264
375 ’

Pnn

i¼1
‘iðxÞux;iðtÞ

Pnn

i¼1
‘iðxÞuy;iðtÞ

Pnn

i¼1
‘iðxÞuz;iðtÞ

266666664

377777775 ¼ NuðxÞuðtÞ ð6Þ
The fluid pore pressure pðx; tÞ and Darcy’s velocity vðx; tÞ are represented in the piecewise constant polynomial and lowest
order Raviart–Thomas space, respectively, thus satisfying the LBB condition that ensures the well-posedness of the discrete
problem [27]. Denoting by ne and nf the number of elements and faces, respectively, we set:
pðx; tÞ ’
Xne

j¼1

hjðxÞpjðtÞ ¼ hTðxÞpðtÞ ð7Þ

vðx; tÞ ’
Xnf

k¼1

wkðxÞqkðtÞ ¼WðxÞqðtÞ ð8Þ
where hj are element-wise constant functions:
hjðxÞ ¼
1 x 2 TðjÞ

0 x 2 X� TðjÞ

(
ð9Þ
and wk are vectorial functions in R3 associated to the kth face belonging to the jth tetrahedron T ðjÞ:
wkðxÞ ¼
� ðx�xkÞ

3jVðTðjÞÞj
x 2 T ðjÞ

0 x 2 X� TðjÞ

(
ð10Þ
with V the volume of TðjÞ and xk the position vector of the node opposite to the kth face in TðjÞ. The ± sign in (10) identifies a
conventional face orientation such that wk points outward the element T ðjÞ with the smallest index j. Because of this orien-
tation, the function wk gives rise to a unitary flux through the kth face and a null flux through all other faces. Eq. (10) implies
that wk is not zero over the tetrahedrons sharing the kth face and is discontinuous across it. Continuity of wk is ensured only
along the normal direction relative to the kth face. The vectors uðtÞ; pðtÞ and qðtÞwhose components are the nodal displace-
ments ux;i; uy;i; uz;i; i ¼ 1; . . . ; nn, the elemental pressures pj; j ¼ 1; . . . ;ne, and the face normal fluxes qk; k ¼ 1; . . . ;nf ,
respectively, are the discrete unknowns of the variational problem.

A weak form of the coupled system (1)–(3) is obtained using the classical approaches followed in both elasto-statics and
fluid-dynamics. As for Eq. (1), the integral form is found by minimizing the total potential energy in the domain X with the
aid of the virtual work principle:
Z

X
�v ;Trtot dX ¼

Z
X

ûv;T bdXþ
Z

CN

ûv;T tN dC ð11Þ
where, according to the classical Voigt notation [28], � is the strain vector (¼ ½�x; �y; �z; cxy; cyz; cxz�
T ¼ Buu, with Bu the strain

elastic matrix) and rtot is the total stress vector (¼ ½rx;tot;ry;tot;rz;tot; sxy;tot; syz;tot; sxz;tot�T ). The apex v denotes the virtual vari-
ables. Recalling Terzaghi’s principle:
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rtot ¼ r� api ð12Þ
where r is the effective stress vector (¼ ½rx;ry;rz; sxy; syz; sxz�T ¼ De�, with De the elastic constant matrix) and i the Kroneck-
er delta in vectorial form, and differentiating with respect to the virtual displacements, Eq. (11) yields:
Z

X
BT

uDeBu dX
� �

u�
Z

X
aBT

uipdX ¼
Z

X
NT

ubdXþ
Z

CN

NT
utN dC ð13Þ
Introducing the pore pressure approximation (7) into (13) produces the final discrete form of Eq. (1):
Ku� Qp ¼ f1 ð14Þ
where
K ¼
Z

X
BT

uDeBu dX ð15Þ

Q ¼
Z

X
aBT

uihT dX ð16Þ

f1 ¼
Z

X
NT

ubdXþ
Z

CN

NT
utN dC ð17Þ
The Dirichlet boundary conditions along CD are prescribed in a strong way.
The integral form of Eqs. (2) and (3) is obtained by a standard Galerkin approach. Using the approximations (6)–(8) gives:
Z

X
hdivv dXþ

Z
X

h
@/bp
@t

dXþ
Z

X
h
@adivû
@t

dX ¼
Z

X
hf dX ð18Þ

Z
X

WT �j�1v dXþ
Z

X
WTrpdX ¼ 0 ð19Þ
Assuming that /; b and a are independent of time and using a weak form for the last integral in Eq. (19), the semi-discrete
mixed FE expression of Eqs. (2) and (3) read:
BT qþ P _pþ Q T _u ¼ f2 ð20Þ
Aq� Bp ¼ f3 ð21Þ
where
A ¼
Z

X
WT �j�1W dX ð22Þ

B ¼
Z

X
xhT dX ð23Þ

P ¼
Z

X
/bhhT dX ð24Þ

f2 ¼
Z

X
hf dX ð25Þ

f3 ¼ �
Z

Cp

pDWT ndC ð26Þ
The components of x in (23) are equal to divðwkÞ; k ¼ 1; . . . ; nf . Unlike standard FEs, the Dirichlet boundary conditions are
the natural conditions for Eq. (21) and are therefore prescribed in a weak way, whereas the Neumann boundary conditions
are to be imposed in a strong way.

2.2. Numerical implementation

The system of differential-algebraic equations (14), (20) and (21) is numerically integrated in time by a finite difference
scheme. Consider any time-dependent function to vary linearly in time between t and t þ Dt, and approximate any time-
derivative at the intermediate instant s:
s ¼ hðt þ DtÞ þ ð1� hÞt ð27Þ
by a first-order incremental ratio. In Eq. (27) h is a scalar value comprised between 0 and 1. The discrete solution scheme thus
obtained is the following:
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h KutþDt � QptþDt
� �

¼ ð1� hÞ Qpt � Kut þ ft
1

h i
þ hftþDt

1 ð28Þ

Q T utþDt þ PptþDt

Dt
þ hBT qtþDt ¼ ð1� hÞ ft

2 � BT qt
h i

þ Q T ut þ Ppt

Dt
þ hftþDt

2 ð29Þ

h½AqtþDt � BptþDt � ¼ ð1� hÞ Bpt � Aqt þ ft
3

h i
þ hftþDt

3 ð30Þ
where the initial values used for q are consistent with the initial pressure space distribution p0ðxÞ. Set c ¼ hDt and
w ¼ ð1� hÞ=h, divide Eq. (28) by �h, multiply Eq. (29) by Dt and Eq. (30) by �Dt. The numerical solution at time t þ Dt
can be therefore computed by solving a linear algebraic system:
AztþDt ¼ ft ð31Þ
where
A ¼
P QT cBT

Q �K 0
cB 0 �cA

264
375 ztþDt ¼

ptþDt

utþDt

qtþDt

264
375 ft ¼

fðpÞ

fðuÞ

fðqÞ

264
375 ð32Þ

fðpÞ ¼ ðDt � cÞ ft
2 � BT qt

h i
þ Q T ut þ Ppt þ cftþDt

2 ð33Þ

fðuÞ ¼ w Kut � Qpt � ft
1

h i
� ftþDt

1 ð34Þ

fðqÞ ¼ ðDt � cÞ Aqt � Bpt � ft
3

h i
� cftþDt

3 ð35Þ
The matrix A in (31) has size ne þ 3nn þ nf and is sparse, symmetric and indefinite. Suitable solvers for (31) belong to the
class of the iterative projection-type Krylov subspace methods properly preconditioned. The explicit construction of A, how-
ever, is generally not convenient from a computational point of view. In fact, while A; B; K; P and Q can be computed just
once at the beginning of the simulation as they do not depend on t; A changes at each step because Dt, hence c, can be gen-
erally increased as the consolidation proceeds. Therefore, a specific block version of a preconditioned Krylov subspace meth-
od is to be implemented.

As far as the preconditioner is concerned, we develop a variant of the block constraint approach successfully applied to
standard FE consolidation models [12,13]. Write A as a 2� 2 block matrix:
A ¼ P HT

H �C

" #
ð36Þ
with:
H ¼
Q

cB

� �
C ¼

K 0
0 cA

� �
ð37Þ
Note that C is a block-diagonal symmetric positive definite (SPD) matrix, as both K and A are SPD and c is positive. Now con-
sider the following A decomposition:
A ¼
I 0

HP�1 I

� �
P 0
0 �S

� �
I P�1HT

0 I

" #
ð38Þ
where S is the SPD Schur complement:
S ¼ C þ HP�1HT ¼ K þ QP�1Q T cQP�1BT

cBP�1Q T cAþ c2BP�1BT

" #
ð39Þ
Eqs. (38) and (39) could be computed exactly as P is diagonal, however S turns out to be much less sparse than C, hence it is
convenient to drop some of its blocks. A simple approximation relies on prescribing the dropped S to preserve the same
block-diagonal structure as C:
S ’ eS ¼ eS1 0
0 eS2

" #
¼ K þ QP�1QT 0

0 cAþ c2BP�1BT

" #
ð40Þ
The blocks eS1 and eS2 cannot be efficiently inverted, so an additional approximation is performed by replacing them with
their incomplete Cholesky factorizations:
eS ’ LS1LT
S1 0

0 LS2LT
S2

" #
¼ LSLT

S ð41Þ



4818 M. Ferronato et al. / Journal of Computational Physics 229 (2010) 4813–4830
eS is used in Eq. (38) in place of the exact Schur complement S, thus providing a factored approximation of A that can be used
as preconditioner. Inverting Eq. (38) and accounting for (41) yields:
Table 1
CP appl

1.

2.
3.
4.

5.

6.

7.

8.
M�1 ¼ U�1L�1 ¼
I �P�1HT L�T

S

0 L�T
S

" #
P�1 0

L�1
S HP�1 �L�1

S

" #
ð42Þ
with M�1 the block constraint preconditioner (CP). The algorithm for applying M�1 to a vector r:
s ¼M�1r )
s1

s2

� �
¼

I �P�1HT L�T
S

0 L�T
S

" #
P�1 0

L�1
S HP�1 �L�1

S

" #
r1

r2

� �
ð43Þ
is provided in Table 1.
The preconditioner (42) is used to accelerate the SQMR solver [26] which has proved a robust and efficient algorithm for

sparse symmetric indefinite problems, e.g. [29,30]. The resulting complete CP-SQMR algorithm for the solution of equations
(31) is provided in Appendix A. The repeated solution of Eq. (31) starting from the initial conditions (5) gives the discrete
vectors u, p and q at the selected values of time, hence the approximate û; p and v through Eqs. (6)–(8), respectively.

3. Numerical results

The stability and accuracy of the 3-D mixed FE consolidation model previously described is investigated with the aid of a
few examples. First, the model is verified against 1-D and 2-D analytical solutions. Then, it is compared to a standard FE mod-
el. Finally, two realistic engineering applications are briefly addressed.

3.1. Model verification

The model is verified against both Terzaghi’s (1-D) and Mandel’s (2-D) consolidation problems.
Terzaghi’s problem [1] consists of a fluid-saturated column of height L with a constant loading PL on top (Fig. 1). Drainage

is allowed for through the upper moving boundary only. The basement is fixed. The load is applied instantaneously at time
t ¼ 0 yielding a non-zero initial overpressure p0ðzÞ and a corresponding settlement u0ðzÞ. Assuming the z-axis positive down-
ward, the analytical solution reads [31,32]:
pðz; tÞ ¼ 4
p

p0

X1
m¼0

1
2mþ 1

exp
�ð2mþ 1Þ2p2ct

4L2

" #
sin

ð2mþ 1Þpz
2L

� �
ð44Þ

uðz; tÞ ¼ cMp0 ðL� zÞ � 8L
p2

X1
m¼0

1

ð2mþ 1Þ2
exp

�ð2mþ 1Þ2p2ct

4L2

" #
cos

ð2mþ 1Þpz
2L

� �( )
þ u0 ð45Þ
where
p0ðzÞ ¼
aM

Ku þ 4l=3
PL ð46Þ

u0ðzÞ ¼
1

Ku þ 4l=3
PLðL� zÞ ð47Þ
with M ¼ ½/bþ ða� /Þcbr ��1 the Biot modulus, cbr the solid grain compressibility, Ku ¼ kþ 2l=3þ a2M the undrained bulk
modulus, cM ¼ ðkþ 2lÞ�1 the vertical uniaxial compressibility, and c ¼ k=½qgðM�1 þ a2cMÞ� the consolidation coefficient. A
homogeneous sandy column with unit section and L ¼ 15 m is simulated, with the relevant hydraulic and mechanical prop-
erties given in Table 2. The prescribed distributed load PL is 104 Pa. The column is discretized into regular tetrahedrals with a
characteristic element size h ¼ 0:5 m (Fig. 1). The time integration is performed with a first-order implicit scheme ðh ¼ 1Þ
and a constant time step Dt ¼ 0:1 s. The simulation proceeds until steady state conditions are attained. A good matching be-
ication to a vector.

z1 ¼ P�1r1

t ¼ Hz1

t t� r2

z2 ¼ L�1
S t

s2 ¼ L�T
S z2

y ¼ HT s2

s1 ¼ P�1y
s1  z1 � s1



Fig. 1. Sketch of the setup for Terzaghi’s consolidation test: (a) 1-D physical problem and (b) numerical discretization.

Table 2
Hydraulic and mechanical parameters of the porous medium used for the model verification. In Terzaghi’s and Mandel’s consolidation tests the sample is made
from sand only.

Porous medium

ksand (m/s) 10�5

kclay (m/s) 10�8

/ 0.375

b ðMPa�1Þ 4:4� 10�4

k (MPa) 40
l (MPa) 40
a 1.0
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tween the analytical and the numerical solution is obtained for both pore pressure and vertical displacement, as is shown in
Figs. 2 and 3, respectively.

Mandel’s problem [33] consists of a poroelastic slab sandwiched between two rigid, frictionless, and impermeable plates,
both loaded by a constant vertical force as shown in Fig. 4. The slab is infinitely long in the y-direction with a 2a� 2b wide
cross-section. The outer surfaces ðx ¼ �aÞ are traction-free and drained. The load 2F, i.e. a force per unit length in the y-direc-
tion, is suddenly applied at t ¼ 0, causing both an instantaneous overpressure p0ðx; zÞ and settlement ux;0ðx; zÞ and uz;0ðx; zÞ,
namely [34]:
0 2000 4000 6000 8000 10000

Pressure [Pa]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

z 
[m

]

Analitycal solution
Numerical solution

h = 0.5 m        Δ t = 0.1 s        θ = 1.0

t = 60 s

t = 600 s

t = 1800 s

t = 3600 s

Fig. 2. Terzaghi’s consolidation test: analytical and numerical solutions for the pore pressure.
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Fig. 3. Terzaghi’s consolidation test: analytical and numerical solutions for the vertical displacement.

Fig. 4. Sketch of the setup for Mandel’s problem: (a) 2-D physical problem after [34] and (b) numerical discretization.
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Fig. 5. Mandel’s problem: pore pressure history at x ¼ 0; x ¼ a=4, and x ¼ a=2.
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p0ðx; zÞ ¼
1

3a
Bð1þ muÞF ð48Þ

ux;0ðx; zÞ ¼
Fmu

2l
x
a

ð49Þ

uz;0ðx; zÞ ¼ �
Fð1� muÞ

2l
y
a

ð50Þ
with B ¼ aM=Ku Skempton’s coefficient, and mu ¼ ½3mþ aBð1� 2mÞ�=½3� aBð1� 2mÞ� and m the undrained and drained Pois-
son’s ratio, respectively. The analytical solution for the pore pressure reads [34]:
pðx; z; tÞ ¼ 2p0

X1
n¼1

sin an

an � sinan cos an
cos

anx
a
� cos an

	 

exp

�a2
nct

a2

� �
ð51Þ
where an are the positive roots of the nonlinear equation:
tan an ¼ �
m

mu � m
an ð52Þ
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Fig. 6. Mandel’s problem: pore pressure profile along the x-axis at various times.
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A homogeneous and isotropic slab is simulated using a ¼ b ¼ 1 m and the properties given in Table 2. F is set equal to
104 N=m. The domain symmetry allows for limiting the study to a quarter only of the x–z plane (Fig. 4). The 2-D problem
is solved using a 3-D cube as domain with appropriate boundary conditions to warrant a plane strain condition along the
y-direction [35]. A regular tetrahedral grid and an implicit ðh ¼ 1Þ integration in time are used, with h ¼ 0:0625 m and
Dt ¼ 0:01 s. The pore pressure vs. time and space is provided in Figs. 5 and 6, respectively, and shows a good agreement be-
tween the analytical and the numerical solution. Notice the peculiar non-monotonic pressure behaviour, i.e. the so-called
Mandel–Cryer effect, with p rising above the initial p0 at small time values because of the slab contraction at the drained
faces inducing an additional build-up in the interior.

The convergence properties of the 3D mixed FE model have been investigated by comparing the analytical solutions (44)
and (45) of Terzaghi’s consolidation problem at t ¼ 60 s with the numerical solution obtained on progressively refined com-
putational grids, ranging from h ¼ 1 m to 0.0625 m. In Fig. 7 the L1-norm of the pressure error is plotted vs. h in a double
log–log plot using a constant Dt value for each profile. An initially linear behaviour can be noticed, then convergence tends to
deteriorate as h decreases. The flattening portion of each profile is less pronounced as Dt is reduced. This agrees with the
theoretical results provided in [23] for a 1-D formulation, with the lack of convergence for any given Dt due to the time dis-
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cretization error. Similar remarks hold true for the displacements using the L2-norm of the error (Fig. 8). Consistent with the
pore pressure L1-norm profile, the theoretical quadratic convergence [23] is progressively lost as h decreases while Dt is kept
constant. Fig. 9 shows the relative residual norm:
rr ¼
kft �AztþDtk2

kftk2

ð53Þ
vs. the number of iterations required by the CP-SQMR algorithm of Appendix A to solve the linear system (31). The different
iteration count indicates that the conditioning of A gets worse as h decreases and Dt increases, which is consistent with the
numerical behaviour typically encountered in mixed FE models of subsurface flow [36]. We observe on passing that using the
exact factorizations of eS1 and eS2 in Eq. (41), in place of the incomplete Cholesky decompositions, does not provide a signif-
icant solver acceleration. For example, in the problem with h ¼ 0:5 m and Dt ¼ 0:1 s convergence is achieved in 88 iterations
instead of 113, at the cost of a much larger CPU time spent for the CP computation and application. This may suggest that
neglecting the off-diagonal blocks of the Schur complement is the most significant approximation introduced in the CP
algorithm.
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Fig. 11. Heterogeneous consolidation test: reference and standard FE numerical solutions for the pore pressure.
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Fig. 10. Heterogeneous consolidation test: reference and mixed FE numerical solutions for the pore pressure.
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3.2. Comparison with standard FEs

The stability of the numerical solution obtained with the Mixed FE model is investigated in a heterogeneous test problem.
The porous column of Fig. 1 is now assumed to consist of 10 m of clay on top and 5 m of sand on bottom. The clay perme-
ability is 1000 times smaller than sand (Table 2) while the elastic properties are the same. Drainage is allowed for also on the
bottom boundary where a pore pressure variation of 9810 Pa is prescribed. The top boundary is now traction-free. The com-
putational grid is the same as in Fig. 1.

The simulated pore pressure at different times is shown in Fig. 10. The reference solution has been obtained by progres-
sively refining both the tetrahedral mesh and the time step until convergence. The result used as a reference is obtained with
h ¼ 0:03125 m and Dt ¼ 0:01 s. The numerical solution is close to the reference one and appears to be quite stable, with no
oscillations at the sand–clay interface. For the sake of a comparison, Fig. 11 provides the pore pressure solution simulated by
a standard FE model based on the same mesh and equal order pressure and displacement approximations. Even in this sim-
ple problem, standard FEs exhibit pronounced initial pressure oscillations at the sand–clay interface. By contrast, the vertical
displacement is stable and accurate in both the FE and mixed FE models (Fig. 12).
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Fig. 12. Heterogeneous consolidation test: reference and numerical solutions for the vertical displacement.
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Fig. 13. Heterogeneous consolidation test: reference and standard FE numerical solutions for the pore pressure on a regularly refined tetrahedral mesh so
that the total number of unknowns equates that of the mixed FE model.
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The stable pore pressure solution provided by the Mixed FE model is obtained at the cost of a larger number of unknowns.
To have an idea, the standard FE model has 837 and 279 displacement and pressure unknowns, respectively, while the Mixed
FE model totals 837, 720 and 1688 unknowns for displacement, pressure and velocity, respectively, with an overall system
Table 3
Hydro-geological properties of the shallow sediments in the upper Adriatic basin used in the realistic model applications.

Clay Silt Sand

kxx ¼ kyy (m/s) 10�7 10�6 10�4

kzz=kxx 1 1 0.1
/ 0.3 0.3 0.3

b ðMPa�1Þ 4:32� 10�4 4:32� 10�4 4:32� 10�4

k (MPa) 1.227 1.227 2.597
l (MPa) 0.819 0.819 1.732
a 1.0 1.0 1.0

Fig. 14. Axonometric view of the FE grid used in the realistic applications.

Fig. 15. Test case 1: pore pressure variation vs. time due to the application of a surface load.
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size equal to 3245. However, if the tetrahedral mesh is regularly refined so that the standard FE system size is three times
larger, oscillations in the pore pressure solution do not vanish, although they are less pronounced than before (Fig. 13). To
have practically insignificant oscillations (650 Pa) the mesh size h at the sand–clay interface must be 60.05 m.
3.3. Realistic applications

The 3-D mixed FE model has been experimented with in two realistic applications addressing the consolidation of a shal-
low formation in the geological basin underlying the Venice lagoon, Italy. A cylindrical stratified porous volume made of a
sequence of alternating sandy, silty and clayey layers down to 50 m depth is simulated. The hydro-geological properties are
summarized in Table 3 and are representative of a shallow sedimentary sequence in the upper Adriatic basin [7,37,38]. The
axial symmetry of the model geometry allows for the discretization of one fourth only of the overall porous volume (Fig. 14)
with zero flux and horizontal displacement prescribed on the inner boundaries. The following additional boundary condi-
tions apply: the outer boundary is fixed and drained, the bottom is fixed and impervious, the top is traction-free and drained.
As shown in Fig. 14, a vertically regularly refined grid is used totaling nn ¼ 13;356 nodes, ne ¼ 70;080 elements and
nf ¼ 143;368 faces with an overall model size equal to 253,516.
3.3.1. Test case 1: surface load
A uniform surface load distributed over a circular area centered on the domain top with a 10-m radius is applied. The load

is set equal to 8 kN/m2 and is representative of an artificial gravel mound similar to that built at the inlets of the Venice
Fig. 17. Test case 2: pore pressure variation 20 days after the start of pumping.
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Fig. 16. Test case 1: vertical land displacement vs. time.
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Fig. 18. Test case 2: vertical land displacement vs. time.

Fig. 19. Test case 2: pore pressure variation vs. time on a horizontal plane located in the middle of the upper clay layer.
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lagoon during the MOSE construction, i.e. the mobile barriers planned to protect Venice from the high tides. The load is
assumed to increase linearly from 0 to 8 kN/m2 within 3 days and then to remain constant. As the first layer consists of
low permeable sediments, the pore pressure is expected to initially rise at the load application as a consequence of the al-
most undrained deformation of the clay. The overpressure gradually dissipates in time with a rate depending on the sedi-
ment thickness and permeability. This is physically related to the zero volume change rate prescribed at the initial time
for the porous medium, which represents the main source of instability in the numerical pore pressure solution. Moreover,
the induced overpressure is generally pretty small, so reproducing it numerically may be a difficult task.

The overpressure rise and dissipation in time as simulated by the mixed FE coupled model are shown in Fig. 15. Despite
the small overpressure, no oscillations in the numerical solution are observed. Note the pressure rise simulated in the deep-
est clay layer as well. As the pore water flows out of the top draining surface the soil consolidates and the ground surface
subsides. Fig. 16 shows the vertical land settlement vs. time in a radial cross-section. After 20 days the overpressure has al-
most completely dissipated and the displacement due to the primary consolidation approaches the steady state.

3.3.2. Test case 2: the Noordbergum effect
One of the most known physical processes accounted for by coupling between fluid flow and soil stress is the pressure rise

occurring in a low permeable layer confining a pumped formation [39]. The phenomenon is called Noordbergum effect by
the name of the village in The Netherlands where it was first observed. Because of the small overpressure involved, especially
when pumping occurs at a shallow depth, the Noordbergum effect turns out to be quite difficult to simulate numerically in a
stable way.

A constant withdrawal rate of 8 � 10�3 m3/s is prescribed from the shallowest sandy layer (Fig. 14) through a vertical
well located at the centre of the simulated cylindrical porous volume. The pore pressure in the pumped formation achieves
a maximum drawdown of 0.15 MPa 20 days after the beginning of pumping. Fig. 17 shows the drawdown distribution, while
Fig. 18 provides the related land settlement vs. time along a radial cross-section. To reveal the Noordbergum effect Fig. 19
provides the numerical pore pressure solution as obtained on a 3-m deep horizontal plane, i.e. in the middle of the upper clay
layer. As theoretically expected, the pore pressure increases at the initial stage of pumping with a very small value (about
1 kPa, i.e. more than 100 times smaller than the largest drawdown), then quickly dissipates as the consolidation proceeds.
The numerical solution appears to be stable with no oscillations and a good degree of symmetry.

4. Conclusions

A fully coupled 3D mixed FE model for the simulation of Biot consolidation has been developed with the aim at alleviating
the oscillations of the pore pressure solution along the interface between materials with different permeabilities at the initial
stage of the process. A linear piecewise polynomial and the lowest order Raviart–Thomas mixed space are selected to
approximate the medium displacement and the fluid flow rate, respectively. The numerical solution is obtained with an algo-
rithm that takes advantage of the block structure of the algebraic linearized system. The numerical model is verified against
the well-known Terzaghi’s (1-D) and Mandel’s (2-D) analytical solutions and then compared to standard FEs. The following
results are worth summarizing:

� the mixed FE formulation is element-wise mass conservative and preserves the practical advantage of using low-order
interpolation elements for the medium displacement as well;
� the solution algorithm addresses the problem in a fully coupled way, thus improving the stability and avoiding the con-

vergence issues that may arise in a split approach;
� the CP-SQMR algorithm appears to be a robust and efficient tool for the fully coupled solution even though the system

conditioning gets worse as the element spacing decreases and the time integration step increases;
� as compared to standard FEs, the mixed FE model appears to be numerically more stable, with no pressure oscillations at

the interface between hydrologically heterogeneous media although a coarse discretization and an equally accurate
approximation for the displacement are used;
� in realistic large-size settings, the mixed FE model is able to simulate successfully complex coupled processes such as the

overpressure within low permeable layers due to a sudden load and the Noordbergum effect.

Acknowledgments

This study has been supported by the Italian MIUR Project (PRIN) ‘‘Advanced numerical methods and models for environ-
mental fluid-dynamics and geomechanics”. The authors wish to thank two anonymous reviewers for their useful comments
and suggestions.

Appendix A. CP-SQMR algorithm

SET #0 ¼ 0; dðpÞ0 ¼ 0; dðuÞ0 ¼ 0; dðqÞ0 ¼ 0
CHOOSE p0; u0; q0 ARBITRARILY
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rðpÞ0 ¼ fðpÞ � Pp0 � QT u0 � cBT q0

rðuÞ0 ¼ fðuÞ � Qp0 þ Ku0

rðqÞ0 ¼ fðqÞ � c Bp0 � Aq0ð Þ
tðpÞ0 ¼ P�1rðpÞ0

tðuÞ0 ¼ L�1
S1 QtðpÞ0 � rðuÞ0

	 

tðqÞ0 ¼ L�1

S2 cBtðpÞ0 � rðqÞ0

	 

s0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ktðpÞ0 k

2
2 þ kt

ðuÞ
0 k

2
2 þ kt

ðqÞ
0 k

2
2

q
wðqÞ0 ¼ L�T

S2 tðqÞ0

wðuÞ0 ¼ L�T
S1 tðuÞ0

wðpÞ0 ¼ tðpÞ0 � P�1 QT wðuÞ0 þ cBT wðqÞ0

	 

q0 ¼ rðpÞ;T0 wðpÞ0 þ rðuÞ;T0 wðuÞ0 þ rðqÞ;T0 wðqÞ0

DO k ¼ 1; 2; . . . UNTIL CONVERGENCE

sðpÞk ¼ PwðpÞk�1 þ Q T wðuÞk�1 þ cBT wðqÞk�1

sðuÞk ¼ QwðpÞk�1 � KwðuÞk�1

sðqÞk ¼ cðBwðpÞk�1 � AwðqÞk�1Þ
rk ¼ wðpÞ;Tk�1 sðpÞk þwðuÞ;Tk�1 sðuÞk þwðqÞ;Tk�1 sðqÞk

IF ½ðrk ¼ 0Þorðqk�1 ¼ 0Þ� THEN

STOP WITH SOLUTION pk�1; uk�1; qk�1

ELSE

ak ¼ qk�1=rk

rðpÞk ¼ rðpÞk�1 � aksðpÞk

rðuÞk ¼ rðuÞk�1 � aksðuÞk

rðqÞk ¼ rðqÞk�1 � aksðqÞk

tðpÞk ¼ P�1rðpÞk

tðuÞk ¼ L�1
S1 QtðpÞk � rðuÞk

	 

tðqÞk ¼ L�1

S2 cBtðpÞk � rðqÞk

	 

#k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ktðpÞk k

2
2 þ kt

ðuÞ
k k

2
2 þ kt

ðqÞ
k k

2
2

q� ��
sk�1

wk ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ #2

k

q
sk ¼ sk�1#kwk

dðpÞk ¼ w2
k#

2
k�1dðpÞk�1 þ w2

kakwðpÞk�1

dðuÞk ¼ w2
k#

2
k�1dðuÞk�1 þ w2

kakwðuÞk�1

dðqÞk ¼ w2
k#

2
k�1dðqÞk�1 þ w2

kakwðqÞk�1

pk ¼ pk�1 þ dðpÞk

uk ¼ uk�1 þ dðuÞk

qk ¼ qk�1 þ dðqÞk

vðqÞk ¼ L�T
S2 tðqÞk

vðuÞk ¼ L�T
S1 tðuÞk

vðpÞk ¼ tðpÞk � P�1 Q TvðuÞk þ cBTvðqÞk

	 

qk ¼ rðpÞ;Tk vðpÞk þ rðuÞ;Tk vðuÞk þ rðqÞ;Tk vðqÞk

bk ¼ qk=qk�1

wðpÞk ¼ vðpÞk þ bkwðpÞk�1

wðuÞk ¼ vðuÞk þ bkwðuÞk�1

wðqÞk ¼ vðqÞk þ bkwðqÞk�1
END IF

END DO
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